AI-Driven Security Paradigms: Elevating Cloud Protection with Machine Learning
DOI:
https://doi.org/10.61856/78jczn59Keywords:
LSTM networks, Network intrusion detection, Behavior-Centric Cybersecurity Center, BCCC dataset, CybersecurityAbstract
In the literature, some studies have explored classifying network traffic using Long Short-Term Memory (LSTM) networks to enhance cloud security. We analyzed a dataset—BCCC—that includes various types of network traffic: Benign, Benign-Email-Receive, Benign-Email-Send, Benign-FTP, Benign-SSH, Benign-Systemic, Benign-Telnet, and Benign-Web_Browsing_HTTP-S. Key features examined include fwd_ack_flag_percentage_in_fwd_packets, fwd_ack_flag_percentage_in_total, min_fwd_header_bytes_delta_len, and handshake_duration. The model performed well in detecting the Benign class, but some classes with fewer samples, such as Benign-FTP and Benign-Email-Receive, require improved precision and recall due to class imbalance. Overall, the model’s performance in classifying network traffic is strong. This research outlines strategies for addressing class imbalance and refining feature engineering. It provides a foundation for further, more detailed investigations into AI approaches for network traffic classification, highlighting the importance of sample balancing to achieve high accuracy.
References
Alauthman, M., Aslam, N., Al-kasassbeh, M., Khan, S., Al-Qerem, A., & Raymond Choo, K.-K. (2020, 2020/01/15/). An efficient reinforcement learning-based Botnet detection approach. Journal of Network and Computer Applications, 150, 102479. https://doi.org/https://doi.org/10.1016/j.jnca.2019.102479
Aleesa, A. M., Zaidan, B. B., Zaidan, A. A., & Sahar, N. M. (2020, 2020/07/01). Review of intrusion detection systems based on deep learning techniques: coherent taxonomy, challenges, motivations, recommendations, substantial analysis and future directions. Neural Computing and Applications, 32(14), 9827-9858. https://doi.org/10.1007/s00521-019-04557-3
Emmanni, P. S. (2024). Leveraging Artificial Intelligence and Machine Learning for Threat Detection in Hybrid Cloud Systems. International Journal of Artificial Intelligence & Machine Learning (IJAIML), 3 (1), 75-84. https://doi.org/https://doi.org/10.17605/OSF.IO/HUXK8
Gauthama Raman, M. R., Somu, N., Jagarapu, S., Manghnani, T., Selvam, T., Krithivasan, K., & Shankar Sriram, V. S. (2020, 2020/06/01). An efficient intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artificial Intelligence Review, 53(5), 3255-3286. https://doi.org/10.1007/s10462-019-09762-z
Hussain, A., & Shabir, G. (2024). AI-Powered DevSecOps: Elevating Security Practices with Machine Learning. https://rgdoi.net/10.13140/RG.2.2.25673.76640
Lopez-Martin, M., Carro, B., & Sanchez-Esguevillas, A. (2020, 2020/03/01/). Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Systems with Applications, 141, 112963. https://doi.org/https://doi.org/10.1016/j.eswa.2019.112963
Maalem Lahcen, R. A., Caulkins, B., Mohapatra, R., & Kumar, M. (2020, 2020/04/21). Review and insight on the behavioral aspects of cybersecurity. Cybersecurity, 3(1), 10. https://doi.org/10.1186/s42400-020-00050-w
Sarker, I. H. (2021, 2021/03/22). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
Sarker, I. H., Furhad, M. H., & Nowrozy, R. (2021, 2021/03/26). AI-Driven Cybersecurity: An Overview, Security Intelligence Modeling and Research Directions. SN Computer Science, 2(3), 173. https://doi.org/10.1007/s42979-021-00557-0
Sarker, I. H., & Kayes, A. S. M. (2020, 2020/10/15/). ABC-RuleMiner: User behavioral rule-based machine learning method for context-aware intelligent services. Journal of Network and Computer Applications, 168, 102762. https://doi.org/https://doi.org/10.1016/j.jnca.2020.102762
Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., Roepman, R., Dietmann, S., Virta, M., Kengara, F., Zhang, Z., Zhang, L., Zhao, T., Dai, J., Yang, J., Lan, L., Luo, M., Liu, Z., An, T., Zhang, B., He, X., Cong, S., Liu, X., Zhang, W., Lewis, J. P., Tiedje, J. M., Wang, Q., An, Z., Wang, F., Zhang, L., Huang, T., Lu, C., Cai, Z., Wang, F., & Zhang, J. (2021, 2021/11/28/). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/https://doi.org/10.1016/j.xinn.2021.100179
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Innovations Journal of Applied Science
This work is licensed under a Creative Commons Attribution 4.0 International License.