Molecular Phylogeny of Chlorophyta Species Isolated from a Shallow Lake Ecosystem
DOI:
https://doi.org/10.61856/pb3bd559Keywords:
Lentic ecosystem Green algae Tetradesmus dimorphus Chlorella sorokiniana OP718565.1 OP718564.1Abstract
Studying the algal diversity of lentic ecosystems is an important issue for identifying the alteration in aquatic ecosystems. Morphological characterization of algae is inadequate to identify different types of microalgae and it is also necessary to depend on molecular evidence which is more crucial and a precise tool. In this study, two Chlorophyta species were identified; Tetradesmus dimorphus (Turpin) M.J.Wynne (Basionym: Scenedesmus dimorphus) and Chlorella sorokiniana Shihira & R.W.Krauss), in a shallow lake. The evolutionary tree was constructed for both species and the results showed that the Iraqi Tetradesmus dimorphus isolate was placed in clade 4, more closely related to the Tetradesmus dimorphus from USA, China, Pakistan, and Sweden with similarity 99 %, 99%, 97 %, and 96 % for all respectively. The Iraqi isolated Chlorella sorokiniana (OP718564.1) is within the clade 2, and composed sister group with Chlorella sorokiniana (KU29188.1) from the USA, with 99 % similarity.
References
Al-Haidarey, M., Abdumunem, I., Abbas, M., & Al-Ansari, N. (2016). The trophic state index of Bahr Al-Najaf depression reservoir, Iraq. journal of environmental hydrology, 24.
Akgül, F., Kizilkaya, İ. T., Akgül, R., & Erduğan, H. (2017). Morphological and molecular characterization of Scenedesmus-like species from Ergene river basin (Thrace, Turkey). Turkish Journal of Fisheries and Aquatic Sciences, 17(3), 609-619. DOI: 10.4194/1303-2712-v17_3_17
Al-Meshhdany, W. Y., & Hassan, F. M. (2020). FIVE DIATOM SPECIES IDENTIFIED BY USING POTENTIAL APPLICATION OF NEXT GENERATION DNA SEQUENCING. Bulletin of the Iraq Natural History Museum (P-ISSN: 1017-8678, E-ISSN: 2311-9799), 16(1), 39-61. https://doi.org/10.26842/binhm.7.2020.16.1.0039
Alwash, A. A. R. B. M., Al-Essa, N. E., & Hassan, F. M. (2018). A New Record Of coelastrella terrestris (reisigl) hegewald & n. Hanagata, 2002 (sphaeropleales, scenedesmaceae) in Iraq. Bull. Iraq Nat. Hist. Mus, 15(2), 153-161. DOI: https://doi.org/10.26842/binhm.7.2018.15.2.0153
Bae, M. J., & Park, Y. S. (2014). Biological early warning system based on the responses of aquatic organisms to disturbances: a review. Science of the Total Environment, 466, 635-649. https://doi.org/10.1016/j.scitotenv.2013.07.075
Balint, M., Pfenninger, M., Grossart, H. P., Taberlet, P., Vellend, M., Leibold, M. A., ... & Bowler, D. (2018). Environmental DNA time series in ecology. Trends in Ecology & Evolution, 33(12), 945-957. https://doi.org/10.1016/j.tree.2018.09.003
Bhaskar, K., Nautiyal, S., Khan, Y. I., & Rajanna, L. (2015). A preliminary study on Phytoplankton in Fresh water-Lake of Gogi, Yadgir district, Karnataka. International Journal of Innovative Research in Science, Engineering and Technology, 4(4), 2030-2037. DOI: 10.15680/IJIRSET.2015.0404031
Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae—novel highly efficient starch producers. Biotechnology and bioengineering, 108(4), 766-776. https://doi.org/10.1002/bit.23016
Bellinger, E. G., & Sigee, D. C. (2015). Freshwater algae: identification, enumeration and use as bioindicators. John Wiley & Sons.
Calbet, A., Sazhin, A. F., Nejstgaard, J. C., Berger, S. A., Tait, Z. S., Olmos, L., ... & Jakobsen, H. H. (2014). Future climate scenarios for a coastal productive planktonic food web resulting in microplankton phenology changes and decreased trophic transfer efficiency. PloS one, 9(4), e94388.
Chen, J., McIlroy, S. E., Archana, A., Baker, D. M., & Panagiotou, G. (2019). A pollution gradient contributes to the taxonomic, functional, and resistome diversity of microbial communities in marine sediments. Microbiome, 7, 1-12. https://doi.org/10.1186/s40168-019-0714-6
SEPRIYANINGSIH, S., HARMOKO, H., & NUR, H. (2023). CHLOROPHYTA MICROALGA DIVERSITY IN MESAT RIVER LUBUK LINGGAU CITY, SOUTH SUMATERA PROVINCE, INDONESIA. Journal of Sustainability Science and Management, 18(3), 50-58.
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel, A., Altermatt, F., ... & Bernatchez, L. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular ecology, 26(21), 5872-5895. https://doi.org/10.1111/mec.14350
Del Campo, J. A., Rodriguez, H., Moreno, J., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2004). Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied microbiology and biotechnology, 64, 848-854. DOI 10.1007/s00253-003-1510-5
Evans, K. M., Wortley, A. H., & Mann, D. G. (2007). An assessment of potential diatom “barcode” genes (cox1, rbcL, 18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta). Protist, 158(3), 349-364.
Gil-Guarín, I. C., Villabona-González, S. L., Parra-García, E., & Echenique, R. O. (2020). Environmental factors driving phytoplankton biomass and diversity in a tropical reservoir. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(171), 423-436.
Goswami, R. D., & Kalita, M. C. (2011). Scenedesmus dimorphus and Scenedesmus quadricauda: two potent indigenous microalgae strains for biomass production and CO2 mitigation—A study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source. J. Algal Biomass Utln, 2(4), 42-49.
Hoshina, R., & Imamura, N. (2004). Phylogenetic position of endosymbiotic green algae in Paramecium bursaria Ehrenberg from Japan. Plant Biology, 6(04), 447-453. DOI: 10.1055/s-2004-820888
John, D. M., Whitton, B. A., & Brook, A. J. (Eds.). (2002). The freshwater algal flora of the British Isles: An identification guide to freshwater and terrestrial algae. Cambridge University Press.
Kelly, R. P., Port, J. A., Yamahara, K. M., Martone, R. G., Lowell, N., Thomsen, P. F., ... & Crowder, L. B. (2014). Harnessing DNA to improve environmental management. Science, 344(6191), 1455-1456.
Khalili, Z., Jalili, H., Noroozi, M., Amrane, A., & Ashtiani, F. R. (2020). Linoleic-acid-enhanced astaxanthin content of Chlorella sorokiniana (Chlorophyta) under normal and light shock conditions. Phycologia, 59(1), 54-62. https://doi.org/10.1080/00318884.2019.167001
Kunikane, S., Kaneko, M., & Maehara, R. (1984). Growth and nutrient uptake of green alga, Scenedesmus dimorphus, under a wide range of nitrogen/phosphorus ratio—I. Experimental study. Water Research, 18(10), 1299-1311.
Lee, S. R., Oak, J. H., Chung, I. K., & Lee, J. A. (2010). Effective molecular examination of eukaryotic plankton species diversity in environmental seawater using environmental PCR, PCR-RFLP, and sequencing. Journal of applied phycology, 22, 699-707. DOI 10.1007/s10811-010-9509-7
Li, Z., Gao, X., Bao, J., Li, S., Wang, X., Li, Z., & Zhu, L. (2023). Evaluation of growth and antioxidant responses of freshwater microalgae Chlorella sorokiniana and Scenedesmus dimorphus under exposure of moxifloxacin. Science of The Total Environment, 858, 159788. https://doi.org/10.1016/j.scitotenv.2022.159788
Li, T., Zheng, Y., Yu, L., & Chen, S. (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresource technology, 131, 60-67. https://doi.org/10.1016/j.biortech.2012.11.121
Liu, J., Sun, Z., Gerken, H., Liu, Z., Jiang, Y., & Chen, F. (2014). Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Marine drugs, 12(6), 3487-3515. https://doi.org/10.3390/md12063487
Lizzul, A. M., Lekuona-Amundarain, A., Purton, S., & Campos, L. C. (2018). Characterization of Chlorella sorokiniana, UTEX 1230. Biology, 7(2), 25. https://doi.org/10.3390/biology7020025
López-García, P., Rodriguez-Valera, F., Pedrós-Alió, C., & Moreira, D. (2001). Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature, 409(6820), 603-607.
Matsukawa, R., Hotta, M., Masuda, Y., Chihara, M., & Karube, I. (2000). Antioxidants from carbon dioxide fixing Chlorella sorokiniana. Journal of applied phycology, 12, 263-267. https://doi.org/10.1023/A:1008141414115
Moon-van der Staay, S. Y., De Wachter, R., & Vaulot, D. (2001). Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409(6820), 607-610.
Nabi, G., Ali, M., Khan, S., & Kumar, S. (2019). The crisis of water shortage and pollution in Pakistan: Risk to public health, biodiversity, and ecosystem. Environmental science and pollution research, 26, 10443-10445. https://doi.org/10.1007/s11356-019-04483-w
Pala, G., Caglar, M., Faruq, R., & Selamoglu, Z. (2021). Chlorophyta algae of Keban Dam Lake Gülüşkür region with aquaculture criteria in Elazıg, Turkey. Sustainable Aquaculture and Health Management Journal, 7(1), 32-46.
Park, J., Bergey, E. A., Han, T., & Pandey, L. K. (2020). Diatoms as indicators of environmental health on Korean islands. Aquatic Toxicology, 227, 105594. https://doi.org/10.1016/j.aquatox.2020.105594
Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil, L., Beja, P., Boggero, A., ... & Kahlert, M. (2018). The future of biotic indices in the ecogenomic era: Integrating (e) DNA metabarcoding in biological assessment of aquatic ecosystems. Science of the Total Environment, 637, 1295-1310. https://doi.org/10.1016/j.scitotenv.2018.05.002
Phinyo, K., Pekkoh, J., & Peerapornpisal, Y. (2017). Distribution and ecological habitat of Scenedesmus and related genera in some freshwater resources of Northern and North-Eastern Thailand. Biodiversitas Journal of Biological Diversity, 18(3), 1092-1099.
https://doi.org/10.13057/biodiv/d180329
Shubert, E., Wilk-Woźniak, E., & Ligęza, S. (2014). An autecological investigation of Desmodesmus: implications for ecology and taxonomy. Plant Ecology and Evolution, 147(2), 202-212. http://dx.doi.org/10.5091/plecevo.2014.902
Stanier, R. Y., Kunisawa, R., Mandel, M. C. B. G., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological reviews, 35(2), 171-205.
Van Dam, R. A., Camilleri, C., & Finlayson, C. M. (1998). The potential of rapid assessment techniques as early warning indicators of wetland degradation: a review. Environmental Toxicology and Water Quality: An International Journal, 13(4), 297-312. https://doi.org/10.1002/(SICI)1098-2256(1998)13:4<297::AID-TOX3>3.0.CO;2-2
Wahhab, T. A., & Hassan, F. M. (2023). Environmental parameters drive the phytoplankton community structure: a case study in Baghdad Tourist Island Lake, Iraq. Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(1), 74-87. https://doi.org/10.30526/36.1.3001
Wan, M., Liu, P., Xia, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., ... & Qiu, G. (2011). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied microbiology and biotechnology, 91, 835-844. DOI 10.1007/s00253-011-3399-8
Wehr, J. D., Sheath, R. G., & Kociolek, J. P. (Eds.). (2015). Freshwater algae of North America: ecology and classification. Elsevier.
Widmer, I., Dal Grande, F., Cornejo, C., & Scheidegger, C. (2010). Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal biology, 114(7), 538-544. https://doi.org/10.1016/j.funbio.2010.04.003
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Innovations Journal of Applied Science

This work is licensed under a Creative Commons Attribution 4.0 International License.







