Adsorption of Fe(III) using Fe3O4@MNPs modified with Silica through a simple and time-saving method: Optimization by RSM

Authors

  • Dr. Asmaa Mohey Eldin Abdel Rahim Chemistry Department - College of Science - Hafr Al Batin University-Saudi Arabia Author
  • Shimaa Al_Shammari Chemistry Department - College of Science - Hafr Al Batin University-Saudi Arabia Author
  • Athmar Al_Shammari Chemistry Department - College of Science - Hafr Al Batin University-Saudi Arabia Author

DOI:

https://doi.org/10.61856/bj875986

Keywords:

Nanocomposite; Silica gel; Adsorption; Fe(III); Response Surface Methodology

Abstract

This study aims to develop a simple method for preparing modified magnetic nanoparticles. This is created by preparing Fe3O4 nanoparticles modified with Silica (Fe3O4@MNPs@Silica) using a quick, simple, and easy solid-phase extraction approach for Fe(III) removal from aqueous solutions.  This nanocomposite was characterized using FTIR, XRD, and SEM analysis. In this context the optimization of Fe(III) adsorption by silica-coated Fe3O4 nanoparticles was studied. The effects of various parameters such as pH, adsorbent dosage, initial concentration, and time on the adsorption process were investigated. It was found that the adsorption capacity of Fe(III) increased with increasing adsorbent dosage and initial concentration and decreased with increasing pH and time. The experimental adsorption conditions were optimized using Response Surface Methodology (RSM). Fe3O4@MNPs@Silica adsorbent has an adsorption capacity of 3.870 mmol-Fe(III) g–1, at pH = 2.5. This confirms a high affinity of Fe3O4@MNPs@Silica towards Fe(III).

References

Abdel Rahim, A. M., Ahmed, S. A., & Soliman, E. M. (2020a). Adsorptive removal of Fe(III) using gallic acid anchored iron magnetic nano-adsorbents synthesized via two different routes under microwave irradiation. In Indian Journal of Chemistry (Vol. 59).

Ahmed, S. A., & Soliman, E. M. (2015). New Trend for Acceleration Solid Phase Extraction Process Based on Using Magnetic Nano-adsorbents along with Surface Functionalization through Microwave Assisted Solvent-free Technique. Analytical Sciences, 31(10), 1047–1054. https://doi.org/10.2116/analsci.31.1047

Ba-Abbad, M. M., Benamour, A., Ewis, D., Mohammad, A. W., & Mahmoudi, E. (2022). Synthesis of Fe3O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application. JOM, 74(9), 3531–3539. https://doi.org/10.1007/s11837-022-05380-3

Baş, D., & Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78(3), 836–845. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2005.11.024

Billah, R. E. K., Haddaji, Y., Goudali, O., Agunaou, M., & Soufiane, A. (2021). Removal and regeneration of iron (Iii) from water using new treated fluorapatite extracted from natural phosphate as adsorbent. Biointerface Research in Applied Chemistry, 11(5), 13130–13140. https://doi.org/10.33263/BRIAC115.1313013140

Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by Sol-Gel Method: Synthesis and Application. Advances in Materials Science and Engineering, 2021(1), 5102014. https://doi.org/https://doi.org/10.1155/2021/5102014

El Shahawy, A., Mubarak, M. F., El Shafie, M., & Abdulla, H. M. (2022). Fe(iii) and Cr(vi) ions’ removal using AgNPs/GO/chitosan nanocomposite as an adsorbent for wastewater treatment. RSC Advances, 12(27), 17065–17084. https://doi.org/10.1039/d2ra01612e

Gaalova, J., Krystynik, P., Dytrych, P., & Kluson, P. (2018). Elimination of dissolved Fe3+ ions from water by electrocoagulation. Journal of Sol-Gel Science and Technology, 88(1), 49–56. https://doi.org/10.1007/s10971-018-4669-z

Geißler, D., Nirmalananthan-Budau, N., Scholtz, L., Tavernaro, I., & Resch-Genger, U. (2021). Analyzing the surface of functional nanomaterials—how to quantify the total and derivatizable number of functional groups and ligands. Microchimica Acta, 188(10), 321. https://doi.org/10.1007/s00604-021-04960-5

Jamasbi, N., Mohammadi Ziarani, G., Mohajer, F., Darroudi, M., Badiei, A., Varma, R. S., & Karimi, F. (2022). Silica-coated modified magnetic nanoparticles (Fe3O4@SiO2@(BuSO3H)3) as an efficient adsorbent for Pd2+ removal. Chemosphere, 307, 135622. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135622

Khuder, A., Koudsi, Y., Abboudi, M., & Aljoumaa, K. (2022). Removal of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), and Pb(II) from Water Solutions Using Activated Carbon Based on Cherry Kernel Shell Powder. Iranian Journal of Chemistry and Chemical Engineering, 41(11), 3687–3705. https://doi.org/10.30492/ijcce.2021.523406.4539

Manousi, N., Rosenberg, E., Deliyanni, E., Zachariadis, G. A., & Samanidou, V. (2020). Magnetic solid-phase extraction of organic compounds based on graphene oxide nanocomposites. In Molecules (Vol. 25, Issue 5). MDPI AG. https://doi.org/10.3390/molecules25051148

Middea, A., Spinelli, L. dos S., de Souza Junior, F. G., Fernandes, T. de L. A. P., de Lima, L. C., Barthem, V. M. T. S., Gomes, O. da F. M., & Neumann, R. (2024). Removal of Fe3+ Ions from Aqueous Solutions by Adsorption on Natural Eco-Friendly Brazilian Palygorskites. Mining, 4(1), 37–57. https://doi.org/10.3390/mining4010004

Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of efficient magnetic particles and activated carbon for dye removal from wastewater. In ACS Omega (Vol. 5, Issue 33, pp. 20684–20697). American Chemical Society. https://doi.org/10.1021/acsomega.0c01905

Moradnia, F., Taghavi Fardood, S., Ramazani, A., Min, B. ki, Joo, S. W., & Varma, R. S. (2021). Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: Green sol-gel synthesis, characterization, and photocatalytic applications. Journal of Cleaner Production, 288. https://doi.org/10.1016/j.jclepro.2020.125632

Namdeo, M., & Bajpai, S. K. (2008). Chitosan–magnetite nanocomposites (CMNs) as magnetic carrier particles for removal of Fe(III) from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 320(1), 161–168. https://doi.org/https://doi.org/10.1016/j.colsurfa.2008.01.053

Perwez, M., Fatima, H., Arshad, M., Meena, V. K., & Ahmad, B. (2023). Magnetic iron oxide nanosorbents effective in dye removal. International Journal of Environmental Science and Technology, 20(5), 5697–5714. https://doi.org/10.1007/s13762-022-04003-3

Rahim, A. M. A. (2024). Synthesis of a Novel CuFe2O4@Schiff Base Magnetic Nanocomposite for the Removal of Cu(II) from Water Samples. In Iranian Chemical Society Anal. Bioanal. Chem. Res (Vol. 11, Issue 1).

Sharifianjazi, F., Irani, M., Esmaeilkhanian, A., Bazli, L., Asl, M. S., Jang, H. W., Kim, S. Y., Ramakrishna, S., Shokouhimehr, M., & Varma, R. S. (2021). Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery. In Materials Science and Engineering: B (Vol. 272). Elsevier Ltd. https://doi.org/10.1016/j.mseb.2021.115358

Zhang, L., Liu, H., Zhu, J., Liu, X., Li, L., Huang, Y., Fu, B., Fan, G., & Wang, Y. (2023). Effective Removal of Fe (III) from Strongly Acidic Wastewater by Pyridine-Modified Chitosan: Synthesis, Efficiency, and Mechanism. Molecules, 28(8). https://doi.org/10.3390/molecules28083445

Downloads

Published

15-09-2025

How to Cite

Abdel Rahim, D. A. M. E., Al_Shammari, S., & Al_Shammari, A. (2025). Adsorption of Fe(III) using Fe3O4@MNPs modified with Silica through a simple and time-saving method: Optimization by RSM. International Innovations Journal of Applied Science, 2(2). https://doi.org/10.61856/bj875986

Similar Articles

11-17 of 17

You may also start an advanced similarity search for this article.