Investigation of some fertility indicators in Iraqi women with polycystic ovary syndrome
DOI:
https://doi.org/10.61856/2rjb8n74Keywords:
polycystic ovarian syndrome, biochemical tests, sex hormones, thyroid hormones, leptinAbstract
Polycystic ovary syndrome (PCOS) is a complex, heterogeneous, multigenic disorder in women of childbearing age with multiple consequences. The exact mechanism of PCOS is not yet fully understood; There are several factors have a role such as genetic, environmental, nutritional, metabolic and other interactions Therefore, the existing study designed to estimate the levels of some biochemical tests and the sex hormones that have a role in PCOS progress. 100 Iraqi women were agreed to participate in the current study, divided into two groups included 50 clinically diagnosed with PCOS women that compared with 50 healthy women without PCOS as a control group (CTRL). The results showed different significant differences of the studied parameters between the PCOS and the CTRL. There was a significant increased level of FBG, HbA1c, insulin resistant, TG and LDL in the PCOS group in comparison to the CTRL, while a significant decreased level of HDL was appeared in PCOS group in comparison to the CTRL. Regarding the results of sex hormones, there were significant increased levels of LH, FSH, testosterone, estradiol hormones in the PCOS group in comparison to the CTRL. In addition, the results of thyroid hormones appeared a significant increased level of T3 hormone in the PCOS group in comparison to the CTRL. Also, the results of leptin hormone showed a significant increased level in the PCOS group in comparison to the CTRL. In conclusion, there was a significant relationship between FBG, HbA1c, insulin resistant, TG, LDL, HDL, LH, FSH and T3 parameters with PCOS.
References
Heidarzadehpilehrood, R., Pirhoushiaran, M., Abdollahzadeh, R., Binti Osman, M., Sakinah, M., Nordin, N., & Abdul Hamid, H. (2022). A Review on CYP11A1, CYP17A1, and CYP19A1 Polymorphism Studies: Candidate Susceptibility Genes for Polycystic Ovary Syndrome (PCOS) and Infertility. Genes, 13(2), 302. https://doi.org/10.3390/genes13020302.
Visser, J.A. (2021). The importance of metabolic dysfunction in “PCOS”. Nat. Rev. Endocrinol. 17:77–78. https://doi.org/10.1038/s41574-020-00456-z.
Firoozabadi, A.D., Firouzabadi R.D., Eftekhar M., Bafghi A.S.T., Shamsi F. (2020). Maternal and neonatal outcomes among pregnant women with different “PCOS” phenotypes: A cross-sectional study. Int. J. Reprod. Biomed. 18:339. https://doi.org/10.18502/ijrm.v13i5.7154.
Pundir, C.S., Deswal R., Narwal V., Dang A. (2020). The prevalence of “PCOS”: A brief systematic review. J. Hum. Reprod. Sci. 13:261–271. https://doi.org/10.4103/jhrs.JHRS_95_18.
Ye, J., Zhu, W., Liu, H., Mao, Y., Jin, F., & Zhang, J. (2018). Environmental exposure to triclosan and polycystic ovary syndrome: a cross-sectional study in China. BMJ Open, 8(10), e019707–e019707. https://doi.org/10.1136/bmjopen-2017-019707.
Yakıt Ak, E., and Aslan, E. (2024). Deprem ve Kadın Üreme Sağlığı. Kadın Sağlığı Hemşireliği Dergisi, 10(1), 43-51.
Du, Y., Li, F., Li, S., Ding, L., & Liu, M. (2023). Causal relationship between polycystic ovary syndrome and chronic kidney disease: A Mendelian randomization study. Frontiers in Endocrinology, 14, 1120119. https://doi.org/10.3389/fendo.2023.1120119.
Büşra Nur AŞIK, and Elif EDE ÇİNTESUN. (2023). İleri Glikasyon Son Ürünleri (AGE) ve Polikistik Over Sendromu İlişkisi. İzüfbed İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi. https://doi.org/10.47769/izufbed.1318435.
Xing, C., Zhang, J., Zhao, H., and He, B. (2022). Effect of Sex Hormone-Binding Globulin on Polycystic Ovary Syndrome: Mechanisms, Manifestations, Genetics, and Treatment. International Journal of Women’s Health, Volume 14, 91–105. https://doi.org/10.2147/ijwh.s344542.
Stener-Victorin, E., & Deng, Q. (2021). Epigenetic inheritance of polycystic ovary syndrome — challenges and opportunities for treatment. Nature Reviews Endocrinology, 17(9), 521–533. https://doi.org/10.1038/s41574-021-00517-x.
Stener-Victorin E., Padmanabhan V., Walters K.A., Campbell R.E., Benrick A., Giacobini P., Dumesic D.A., Abbott D.H. (2020). Animal Models to Understand the Etiology and Pathophysiology of “PCOS”. Endocrine Reviews, 41(4), 538–576. https://doi.org/10.1210/endrev/bnaa010.
Dumesic, D. A., Hoyos, L. R., Chazenbalk, G. D., Naik, R., Padmanabhan, V., & Abbott, D. H. (2020). Mechanisms of intergenerational transmission of polycystic ovary syndrome. Reproduction, 159(1), R1–R13. https://doi.org/10.1530/rep-19-0197.
Dobbie, L. J., Pittam, B., Zhao, S. S., Alam, U., Hydes, T. J., Barber, T. M., and Cuthbertson, D. J. (2023). Childhood, adolescent, and adulthood adiposity are associated with risk of PCOS: A Mendelian randomization study with meta-analysis. Human Reproduction, 38(6), 1168-1182. https://doi.org/10.1093/humrep/dead053.
Whooten, R.C., Rifas-Shiman, S.L., Perng, W., Chavarro, J.E., Taveras, E., Oken, E. and Hivert, M-F. (2024). Associations of Childhood Adiposity and Cardiometabolic Biomarkers with Adolescent PCOS. Pediatrics, 153 (5), e2023064894. https://doi.org10.1542/peds.2023-064894.
Zeng, X., Xie, Y.-J., Liu, Y.-T., Long, S.-L., Mo, Z.-C. (2020). Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta, 502, 214–221. https://doi.org/10.1016/j.cca.2019.11.003.
De Leo, V., Musacchio, M.C., Cappelli, V., Massaro, M.G., Morgante, G., and Petraglia, F. (2016). Genetic, hormonal and metabolic aspects of “PCOS”: An update. Reprod. Biol. Endocrinol, 14, 1–17. https://doi.org/10.1186/s12958-016-0173-x.
Rezaee, M., Asadi, N., Pouralborz, Y., Ghodrat, M., & Habibi, S. (2016). A Review on Glycosylated Hemoglobin in Polycystic Ovary Syndrome. Journal of Pediatric and Adolescent Gynecology, 29(6), 562-566. https://doi.org/10.1016/j.jpag.2016.07.001.
Lerchbaum, E., Schwetz, V., and Giuliani, A. (2013). Assessment of glucose metabolism in polycystic ovary syndrome: HbA1c or fasting glucose compared with the oral glucose tolerance test as a screening method. Human Reproduction, 28(9), 2537-2544. https://doi.org/10.1093/humrep/det255.
Numbi, D., Dophie, T., Luzolo, G., Nyota, P., Ngandu, P., Zita, M., Ntita, G., Nzongola-Nkasu, D., Masidi, J., Nganga, M., Esimo, J., Lobota, A., Onkin, J., Buassa-bu-Tsumbu, B., Risasi, C., Verdonck, F., Spitz, B., and Moyene, J. (2019). Importance of the Glycated Hemoglobin Assay in Congolese Women with Polycystic Ovary Syndrome: A Case-Control Study in Kinshasa, DR Congo. Open Journal of Obstetrics and Gynecology, 09, 1492-1509. https://doi.org/10.4236/ojog.2019.911145.
Rostami Dovom, M., Rahmati, M., Amanollahi Soudmand, S., Ziaeefar, P., Azizi, F., & Ramezani Tehrani, F. (2022). The Hidden Link between Polycystic Ovary Syndrome and Kidney Stones: Finding from the Tehran Lipid and Glucose Study (TLGS). Diagnostics, 13(17), 2814. https://doi.org/10.3390/diagnostics13172814.
Du, Y., Li, F., Li, S., Ding, L., and Liu, M. (2023). Causal relationship between polycystic ovary syndrome and chronic kidney disease: A Mendelian randomization study. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1120119.
El-Eshmawy, M. M., Ibrahim, A., Bahriz, R., Shams-Eldin, N., and Mahsoub, N. (2022). Serum uric acid/creatinine ratio and free androgen index are synergistically associated with increased risk of polycystic ovary syndrome in obese women. BMC Endocrine Disorders, 22(1). https://doi.org/10.1186/s12902-022-01240-y.
Mansour, A., Mirahmad, M., Mohajeri-Tehrani, M. R., Jamalizadeh, M., Hosseinimousa, S., Rashidi, F., … Sajjadi-Jazi, S. M. (2023). Risk factors for insulin resistance related to polycystic ovarian syndrome in Iranian population. Scientific Reports, 13(1), 10269. https://doi.org/10.1038/s41598-023-37513-2.
Kağan Güngör. (2023). The Relationship between Anti-mullerian Hormone and Prolactin Levels in Polycystic Ovarian Syndrome. The Anatolian Journal of Family Medicine, 6(3), 128–134. https://doi.org/10.5505/anatoljfm.2023.00821.
Fan, H., Ren, Q., Sheng, Z., Deng, G., & Li, L. (2023). The role of the thyroid in polycystic ovary syndrome. Frontiers in Endocrinology, 14, 1242050. https://doi.org/10.3389/fendo.2023.1242050.
Kirkegaard, S., Uldall, M., Andersen, S., & Stine Linding Andersen. (2023). Endometriosis, polycystic ovary syndrome, and the thyroid: a review. Endocrine Connections, 13(2). https://doi.org/10.1530/ec-23-0431.
Peng, Y., Yang, H., Song, J., Feng, D., Na, Z., Jiang, H., Meng, Y., Shi, B. and Li, D. (2022). Elevated Serum Leptin Levels as a Predictive Marker for Polycystic Ovary Syndrome. Front. Endocrinol, 13, 845165. https://doi.org/10.3389/fendo.2022.845165.
Sharif, Y. H. (2022). Serum leptin level-insulin resistance-based correlation in polycystic ovary syndrome obese and non-obese sufferer female. Journal of Population Therapeutics and Clinical Pharmacology, 29(2). https://doi.org/10.47750/jptcp.2022.916.
Ramanand, S. J., Ramanand, J. B., Jain, S. S., Raparti, G. T., Ghanghas, R. R., Halasawadekar, N. R., Patil, P. T., and Pawar, M. P. (2017). Leptin in non PCOS and PCOS women: a comparative study. International Journal of Basic and Clinical Pharmacology, 3(1), 186–193. https://www.ijbcp.com/index.php/ijbcp/article/view/975.
Fathy Mohamed, A., Mohamed Zakaria, A. E.-M., Abd El-Moneim Ali, M., and Osama Abd El-Motaal, A. (2021). CORRELATION BETWEEN LEPTIN, INSULIN AND POLYCYSTIC OVARY SYNDROME. Al-Azhar Medical Journal, 50(3), 1881-1892. https://doi:10.21608/amj.2021.178293.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 International Innovations Journal of Applied Science
This work is licensed under a Creative Commons Attribution 4.0 International License.