Enhancing Microalgal Biomass and Chemical Composition for Sustainable Wastewater Treatment

Authors

  • Raghda Salim Department of Biotechnology, Collage of Science, University of Baghdad, Baghdad, Iraq Author

DOI:

https://doi.org/10.61856/kzb87p57

Keywords:

Biomass production Chemical Composition Sustainable solutions Central Composite Design (CCD) Wastewater Treatment

Abstract

 The research explores enhancing microalgal biomass production and its chemical composition for sustainable wastewater treatment. By using the Central Composite Design (CCD) methodology, nutrient concentrations and microbial components in the growth medium were optimized. Adjustments to light exposure, particularly with red and blue frequencies, significantly improved biomass yield, carbon sequestration, and protein content. Optimal light intensity further enhanced these parameters. A process incorporating on-demand CO2 supply and controlled pH levels showed potential for increasing biomass concentrations and nutrient utilization efficiency. Results demonstrated a 28% increase in biomass fixation and a 27% increase in biomass production compared to unoptimized conditions. The study emphasizes the effectiveness of integrated approaches in boosting biomass production and optimizing wastewater treatment, offering promising avenues for sustainable bio-based solutions

 

References

Adato, M., & Meinzen-Dick, R. (2002). Assessing the impact of agricultural research on poverty using the Sustainable Livelihoods Framework. International Food Policy Research Institute.

Ahn, Y., Jung, H., Tatavarty, R., Choi, H., Yang, J., & Kim, I. S. (2005). Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil. Biodegradation, 16(1), 45-56.

Ah-You, K., Suleiman, M., & Jaworski, J. (2000). Biotechnology and cleaner production in Canada. Program for Energy Research and Development (PERD), Life Sciences Branch Industry Canada.

Alivisatos, P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22(1), 47-52.

Alkhaddar, R. M., Phipps, D. A., & Cheng, C. (2005). Today and tomorrow! Research prospects for aerobic biological liquid waste treatment for reduction of carbon load. E-Water, Official Publication of the European Water Association (EWA), 1-18.

Andres, Y., Dumont, E., Le Cloirec, P., & Ramirez-Lopez, E. (2006). Wood bark as packing material in a biofilter used for air treatment. Environmental Technology, 27(12), 1297-1301.

Baheri, H., & Meysami, P. (2002). Feasibility of fungi bioaugmentation in composting a flare pit soil. Journal of Hazardous Materials, 89(2-3), 279-286.

Balkema, A. J., Preisig, H. A., Otterpohl, R., & Lambert, F. (2002). Indicators for the sustainability assessment of wastewater treatment systems. Urban Water, 4(2), 153-161.

Baptista, S. J., Camporese, E. F. S., & Freire, D. D. C. (2006). Evaluation of biostimulation, bioaugmentation and use of biosurfactant as treatment technique of clay soil contaminated with diesel oil. Environmental Engineering and Management Journal, 6(2), 1325-1332.

Beaudette, L. A., Cassidy, M. B., England, L., Kirk, J.L., Habash, M., Lee, H., & Trevors, J. T. (2002). Bioremediation of soils. In G. Bitton (Ed.), Encyclopedia of Environmental Microbiology, 722-737. Wiley-Interscience.

Beck-Friis, B. G. (2001). Emissions of ammonia, nitrous oxide and methane during composting of organic household waste (PhD thesis). Swedish University of Agricultural Sciences, Uppsala.

Beliaeff, B., & Burgeot, T. (2002). Integrated biomarker response: A useful tool for ecological risk assessment. Environmental Toxicology and Chemistry, 21(6), 1316-1322.

Beyers, L., Ismaël, Y., Piesse, J., & Thirtle, C. (2001, June). The efficiency of Bt cotton adopters in the Makhathini Flats of Kwazulu-Natal. Paper presented at the ISNAR consultation “Biotechnology and Rural Livelihood—Enhancing the Benefits,” The Hague.

Bidoki, S. M., Wittlinger, R., Alamdar, A. A., & Burger, J. (2006). Eco-efficiency analysis of textile coating materials. Journal of the Iranian Chemical Society, 3(4), 351-359.

BIO-PRO. (2008). Biotechnology in the chemical industry: The long road from exception to standard (II). The Biotech/Life Science Portal Baden-Württemberg. Retrieved from http://bio-pro.de/en/region/ulm/magazin/00698/index-html

Bitton, G. (2005). Wastewater microbiology. Wiley-Liss, John Wiley and Sons.

Blanco, A. (2000). Immobilization of non-viable cyanobacteria and their use for heavy metal adsorption from water. In E. J. Olguin, G. Sánchez, & E. Hernández (Eds.), Environmental biotechnology (pp. 135-151). Taylor & Francis.

Blonskaya, V., & Vaalu, T. (2006). Investigation of different schemes for anaerobic treatment of food industry wastes in Estonia. Proceedings of the Estonian Academy of Sciences: Chemistry, 55, 14-28.

Cole-Turner, R. (2003). Biotechnology. In Encyclopedia of Science and Religion. Retrieved December 7, 2014, from https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/biotechnology

Commission of the European Communities. (2002). Economic impacts of genetically modified crops on the agrifood sector: A first review. Working Document Rev. Directorate General for Agriculture.

Charpentier, J.C. (2007). In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money). Chemical Engineering Journal, 134(1-3), 84-92.

Dale, B. E., & Kim, S. (2006). Biomass refining global impact – The biobased economy of the 21st century. In B. Kamm, P. R. Gruber, & M. Kamm (Eds.), Biorefineries - Industrial processes and products. Status quo and future directions, 1 ,41-66. Wiley-VCH.

Das, K., & Mukherjee, A. K. (2007). Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresource Technology, 98(7), 1339-1345.

Das, T. K. (2005). Toward zero discharge: Innovative methodology and technologies for process pollution prevention. John Wiley and Sons.

Das, T. K., & Jain, A. K. (2001). Pollution prevention advances in pulp and paper processing. Environmental Progress & Sustainable Energy, 20(2), 87-92.

Dash, R. R., Gaur, A., & Balomajumder, C. (2009). Cyanide in industrial wastewater and its removal: A review on biotreatment. Journal of Hazardous Materials, 163(1), 1-11.

De Souza, A. P., Burgess, S. J., Doran, L., Hansen, J., Manukyan, L., Maryn, N., (2022). Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science, 377(6608), 851-854. https://doi.org/10.1126/science.adc9831

De Steur, H., Blancquaert, D., Strobbe, S., Lambert, W., Gellynck, X., & Van Der Straeten, D. (2015). Status and market potential of transgenic biofortified crops. Nature Biotechnology, 33(1), 25-29. https://doi.org/10.1038/nbt.3110

Eisenhut, M., & Weber, A. P. M. (2019). Improving crop yield. Science, 363(6422), 32-33. https://doi.org/10.1126/science.aav8979

Falck-Zepeda, J. B., Traxler, G., & Nelson, R. G. (2000). Surplus distribution from the introduction of a biotechnology innovation. American Journal of Agricultural Economics, 82(2), 360-369.

Gonsalves, C., Lee, D. R., & Gonsalves, D. (2004). Transgenic virus-resistant papaya: The Hawaiian "Rainbow" was rapidly adopted by farmers and is of major importance in Hawaii today. APSnet Feature Articles. https://doi.org/10.1094/APSnetFeature-2004-0804

Hines, K. M., Chaudhari, V., Edgeworth, K. N., Owens, T. G., & Hanson, M. R. (2021). Absence of carbonic anhydrase in chloroplasts affects C3 plant development but not photosynthesis. Proceedings of the National Academy of Sciences, 118(18), e2107425118. https://doi.org/10.1073/pnas.2107425118

Iñiguez, C., Aguiló-Nicolau, P., & Galmés, J. (2021). Improving photosynthesis through the enhancement of Rubisco carboxylation capacity. Biochemical Society Transactions, 49(5), 2007-2019. https://doi.org/10.1042/BST20201056

Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314), 857-861. https://doi.org/10.1126/science.aai8878

Murchie, E. H., Ali, A., & Herman, T. (2015). Photoprotection as a trait for rice yield improvement: Status and prospects. Rice, 8(1), 31. https://doi.org/10.1186/s12284-015-0065-2

Ogbaga, C. C., Stepien, P., Athar, H.-U.-R., & Ashraf, M. (2018). Engineering Rubisco activase from thermophilic cyanobacteria into high-temperature sensitive plants. Critical Reviews in Biotechnology, 38(4), 559-572. https://doi.org/10.1080/07388551.2017.1378998

Ogbonda, K. H., Abu, G. O., & Aminigo, R. E. (2007). Optimization studies of biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted flame pit in the Niger Delta. African Journal of Biotechnology, 6(22), 2550-2554.

Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., (2017). Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: A comprehensive review. 3 Biotech, 7(4), 239. https://doi.org/10.1007/s13205-017-0870-y

Ruangsomboon, S., Chidthaisong, A., Bunnag, B., Inthorn, D. and Harvey, N.W. (2007). Lead (Pb2+) adsorption characteristics and sugar composition of capsular polysaccharides of cyanobacterium Calothrix marchica Songklanakarin J. Sci. Technol., 29(2), 529-541

Thieman, W. J., & Palladino, M. A. (2008). Introduction to biotechnology. Pearson/Benjamin Cummings.

Wei, S., Li, X., Lu, Z., Zhang, H., Ye, X., Zhou, Y., (2022). A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 377(6608), eabi8455. https://doi.org/10.1126/science.abi8455

Wu, J., Lawit, S. J., Weers, B., Sun, J., Mongar, N., Van Hemert, J., (2019). Overexpression of zmm28 increases maize grain yield in the field. Proceedings of the National Academy of Sciences, 116(48), 23850-23858. https://doi.org/10.1073/pnas.1902593116

Zuo, L., Yang, R., Zhen, Z., Liu, J., Huang, L., & Yang, M. (2018). A 5-year field study showed no apparent effect of the Bt transgenic 741 poplar on the arthropod community and soil bacterial diversity. Scientific Reports, 8(1), 1956. https://doi.org/10.1038/s41598-018-20322-3

Downloads

Published

15-07-2024

How to Cite

Salim, R. (2024). Enhancing Microalgal Biomass and Chemical Composition for Sustainable Wastewater Treatment. International Innovations Journal of Applied Science, 1(spc). https://doi.org/10.61856/kzb87p57

Similar Articles

11-20 of 20

You may also start an advanced similarity search for this article.