

The International Innovations Journal of **Applied Science**

Journal homepage: https://iijas.eventsgate.org/iijas

ISSN: 3009-1853 (Online)

Adsorption of Fe(III) using Fe3O4@MNPs modified with Silica through a simple and time-saving method Optimization by RSM

Asmaa M. Abdel Rahim¹*, Shaima M. Al Shammari¹, Athmar A. Al Shammari¹

¹ Department of Chemistry, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin 39524, Saudi Arabia

ARTICLE INFO ABSTRACT

Article history:

Received 2 Apr. 2025, Revised 19 Aug.2025, Accepted 30 Sep. 2025, Available online 15 Sep 2025

Keywords:

Nanocomposite; Silica gel; Adsorption; Fe(III);

Response Surface Methodology

This study aims to develop a simple method for preparing modified magnetic nanoparticles. This is achieved by preparing Fe3O4 nanoparticles modified with Silica (Fe3O4@MNPs@Silica) using a rapid, straightforward, and simple solid-phase extraction approach for Fe(III) removal from aqueous solutions. This nanocomposite was characterized using FTIR, XRD, and SEM analysis. In this context, the optimization of Fe(III) adsorption by silica-coated Fe3O4 nanoparticles was studied. The effects of various parameters, including pH, adsorbent dosage, initial concentration, and time, on the adsorption process were investigated. It was found that the adsorption capacity of Fe(III) increased with increasing adsorbent dosage and initial concentration and decreased with increasing pH and time. The experimental adsorption conditions were optimized using Response Surface Methodology (RSM). The Fe3O4@MNPs@Silica adsorbent exhibits an adsorption capacity of 3.870 mmol Fe(III) g-1 at a pH of 2.5. This confirms a high affinity of Fe3O4@MNPs@Silica towards Fe(III).

1. Introduction

Water contamination is a serious issue in many regions worldwide, and conventional water treatment techniques can be expensive and ineffective. However, due to advancements in nanotechnology, magnetic nanoparticles have emerged as a potential alternative to traditional water treatment methods. The unique characteristics of these nanoparticles make them highly effective in removing contaminants from water. Particles that can be magnetized and have a size of less than 100 nanometres are known as magnetic nanoparticles (MNPs). They are effective in adsorbing pollutants from water due to their high surface area-to-volume ratio (Abdel Rahim et al., 2020a). Additionally, the nanoparticles' magnetic properties make it simple to remove them from the water after thereby reducing environmental contamination. The application of MNPs in water treatment is relatively simple and costeffective. They can be removed from the water using magnetic fields, and the recovered nanoparticles can be used again, reducing the cost of water treatment. The MNPs can be used to remove heavy metals (El Shahawy et al., 2022; Rahim, 2024; Zhang et al., 2023), dyes (Moosavi et al., 2020; Perwez et al., 2023), and organic compounds (Manousi et al., 2020) from water. They can be synthesized in various forms such as ferrites, oxides, and metals. MNPs can be modified by altering their surface characteristics to perform specific functions or enhance their performance in multiple applications. The following methods are standard for modifying magnetic nanoparticles: Surface Functionalization, which involves attaching molecules or polymers onto the surface of magnetic nanoparticles. Functional groups such as carboxyl (-COOH), amine (-NH₂), hydroxyl (-OH), or thiol (-SH) groups can be introduced. These functional groups can facilitate further modification or conjugation with biomolecules, drugs, or targeting ligands (Geißler et al., 2021). Silica coating: Silica (SiO₂) coatings provide a robust and biocompatible shell around magnetic nanoparticles. Fortunately, the sialvlation

E-mail address: amoheyeldin@uhb.edu.sa

^{*} Corresponding author.

process of coating Fe₃O₄ MNPs with a SiO₂ enhances their layer chemical stability, preventing Fe₃O₄ from oxidizing aggregating. For this surface reason. modification with a specific organic or inorganic component is necessary to improve the adsorption efficacy of these nanoparticles (Sharifianjazi et al., 2021).

Modifying magnetic nanoparticles with silica gel involves coating the nanoparticles with a silica (SiO₂) layer. This process, commonly referred to as silica coating or encapsulation, is employed to impart various properties to magnetic nanoparticles. (Jamasbi et al., 2022; Moradnia et al., 2021). The sol-gel method is a standard method used for coating magnetic nanoparticles (MNPs) with silica, where MNPs can be directly synthesized within a silica matrix through the sol-gel process, in which silica precursors are polymerized around the nanoparticles. (Bokov et al., 2021). Silica coating of MNPs enhances their versatility and stability, making them valuable tools in biomedical, environmental, and industrial applications. The choice of silica coating method depends on the desired properties and applications of the modified intended nanoparticles.

Heavy metals such as Fe(III) are toxic and can cause severe health problems in humans if consumed in high amounts. (Billah et al., 2021). Fe(III) contamination of water can result from various sources, including both humanmade and natural sources. In conclusion, although Fe(III) is generally not harmful at low concentrations, pollution-related higher concentrations of the metal can have serious adverse effects on the environment and human health. Fe(III) in water must be adequately managed, monitored, and treated to lessen its detrimental impacts on ecosystems and public health. Several effective treatment methods have been used to remove Fe(III) from water, including electrocoagulation. (Gaalova et al., 2018) solid-phase extraction technique using various adsorbents(Khuder et al., 2022; Middea et al., 2024; Zhang et al., 2023b). Among these adsorbents, MNPs can be used to adsorb and remove Fe(III) from water. (Abdel Rahim et al., 2020a; Namdeo & Bajpai, 2008).

Hence, this work aims to fully utilize Fe₃O₄@MNPs through a simple modification method, thereby providing Fe₃O₄@MNPs@Silica. The characterization and structure were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Moreover, the adsorption parameters were optimized using RSM methodology.

2. Methodology

2.1. Materials

Analytical reagent-grade FeCl₃·6H₂O, HCl, NaOH, the sodium salt of EDTA, and silica gel were purchased from Sigma-Aldrich. D-64291 Darmstadt, Germany), FeSO₄·7H₂O was purchased from LOBA CHEM Pvt. Ltd., Mumbai 400005, India. Salicylic acid (C₆H₄(OH)COOH) was obtained from Techno Pharm Chem, Haryana, India, and double-distilled water was used throughout all experiments.

2.2. Instruments

A Fisher Scientific Accumet pH-meter (Model 825, Germany) calibrated against two standard buffer solutions at pH 4.0 and 9.2 was used for pH measurements. Wrist Action mechanical shaker model 75 (manufactured by Burrell Corporation, Pittsburgh, PA., USA) was used for shaking. A Thermo Scientific Nicolet 380 spectrometer, operating from 400 cm-1 to 4000 cm-1, was used to record Fourier transform infrared (FTIR) spectra for molecular nature analysis. An X'Pert PRO 30-40-60 diffractometer was used to examine powder Xray diffractograms in the 20-80° range using Kα radiation from a Cu source ($\lambda = 1.5406$ Å). Scanning electron microscopy (SEM) analysis was performed using a JEOL JSM-6000 plus SEM and a ZEISS LEO SUPRA 55.

2.3. Preparation of Fe₃O₄@MNPs@Silica

Fe₃O₄@MNPs@Silica was synthesized using the co-precipitation technique. (Ba-Abbad et al., 2022). In short, two 50-ml beakers of water

filled with separate solutions were FeSO₄·7H₂O and FeCl₃·6H₂O, and then they were mixed and continuously stirred at room temperature. FeSO₄·7H₂O and FeCl₃·6H₂O have molar ratios of 2:1 for Fe²⁺ and Fe³⁺, respectively. After that, an appropriate weight of silica gel was added to the mixture and stirred at room temperature. The temperature of the mixture was raised to 35 ± 5 °C. NaOH was added to adjust the pH of the final solution to 11.0. For two hours, the samples were vigorously agitated at 60 ± 5 °C. The samples were allowed to cool for two hours. After that, unreacted precursors were removed from both samples by washing. Double distilled water (DDW) was used for the washing phase until the solution's pH reached 7.0 ± 0.2 . Afterward, Fe₃O₄@MNPs@Silica was dried in an oven for 24 hours.

2.4. Software for statistical analysis and data analysis

The optimum values of four effective and independent factors on the effectiveness of Fe(III) removal from water were found in the current study using the Box-Behnken experimental design (BBD). These parameters are (A) pH, (B) the amount Fe₃O₄@MNPs@Silica in milligrams, and (C) the concentration. of Fe(III) in mol/L, and (D) the adsorption time (min). Minitab 8.0, from the United States, was used to specify the experimental design and enhance the system through statistical parameter estimation. The number of experiments (N) required for the development of BBD can be calculated from the following equation:

$$N = 2k (k - 1) + C_0 (1)$$

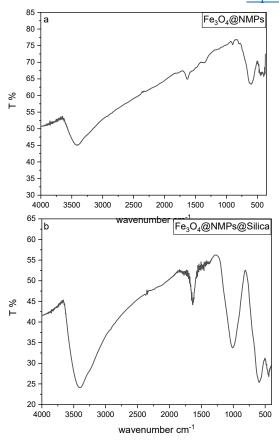
3. Results and discussion

3.1. Characterization of the adsorbent

The different functional groups adsorbed on the Fe₃O₄-MNPs were detected by Fourier transform-infrared absorption spectrometry (FT-IR). Fig. 1a displays the resultant spectra. The vibrational bands at approximately 581 cm⁻¹ and 631 cm⁻¹ for the pure magnetite sample are indicative of the U(Fe–O) lattice

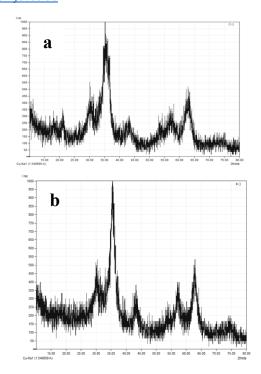
where k is a combination of several factors and C_0 is the number of central points (where $C_0 = 4$).

Table 1 contains the amounts and ranges of the variables used in the BBD for the adsorption of Fe(III) using Fe₃O₄@MNPs@Silica.


Table 1: Experimental range and amounts of independent factors for Fe(III) using Fe₃O₄@MNPs@Silica

	min.	max.			
pН				1	4
Wt of	Fe ₃ O ₄ @	NPs@Silica	10	100	
(mg)					
Conc.	of	Fe	(III)	0.001	0.1
(mol/L)					
Time	of	adso	adsorption		60
(minutes)					

2.5. Batch Adsorption Method


The following procedure was used to remove Fe(III) from the water's surface. In a 50.0 mL beaker, an appropriate amount of the nano adsorbent was added to a solution containing a specific concentration of Fe(III) (0.001 to 0.1 mol/L). Before adding the adsorbent, pH levels were adjusted between 1.0 and 4.0 by varying quantities of either 1.0 M NaOH or 1.0 M HCl solutions. After achieving equilibrium through mechanical shaking for a time ranging from 5 to 60 minutes at room temperature, the metalion-free solution was transferred to a conical flask, and the adsorbent was separated using an external magnetic field. A complexometric EDTA titration was used to determine the concentration of Fe(III) in the solutions.

vibrations, as shown in Fig. 1b. The silicacoated magnetite sample exhibits faint bands at 1027 and 633–589 cm⁻¹, and a band at 1157 cm⁻¹ that corresponds to the stretching vibrations of v(Si-O-Si), v(Si-OH), and v(Si-O-Fe), respectively. These bands align well with coatings of Fe₃O₄-MNPs made with silica gel (Abdel Rahim et al., 2020a).

Figure 1: FT-IR spectra of (a) Fe₃O₄ MNPs, and (b) Fe₃O₄@MNPs@Silica

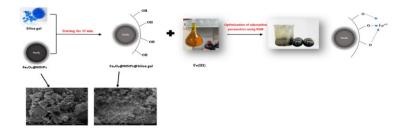

X-ray diffraction patterns (XRD) were used to confirm the Fe₃O₄ structure before and after modification with silica gel. As shown in Fig. 2, the powder XRD pattern of the synthesized magnetic nanoparticles was like the pattern for crystalline magnetite Fe₃O₄ (Ahmed & Soliman, 2015). The distinctive peaks of pure Fe₃O₄ MNPs at 2θ/deg. The values of 30.1, 35.4, 43.9, 53.4, 57.0, and 62.6 confirm the presence of the crystalline structure of magnetite.

Figure 2: XRD patterns of (a) Fe₃O₄ MNPs, and (b) Fe₃O₄@MNPs@Silica

SEM was used to describe the morphology of Fe₃O₄ MNPs before and after modification (Fig. 3). Figure 3(a) shows the scanning electron micrograph of Fe₃O₄ MNPs, revealing a rough surface. Such material is suitable for adsorption research due to the presence of OH functional groups and surface porosity. The fact that the Fe₃O₄@MNPs@Silica particles aggregated after being modified with Fe₃O₄ MNPs, as seen in Fig. 3(b), verifies the effectiveness of the binding process between silica gel and Fe₃O₄ MNPs. Moreover, the particles become small after modification in Fe₃O₄@MNPs@Silica adsorbent.

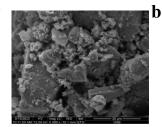
All these changes support the success of fabricating Fe₃O₄@MNPs@Silica, as shown in Scheme 1.

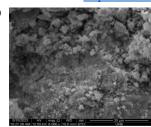
Scheme 1: Synthesis of Fe₃O₄@MNPs@Silica through time-saving method

no

1.

2.


3.


рΗ

2.5

2.5

2.5

Table 2: Adsorption capacity values according to the amounts of independent factors for Fe(III) using Fe₃O₄@MNPs@Silica

Conc.

0.55

0.10

0.55

Time

32.5

5.0

32.5

Wt

55

55

55

Adsorption capacity

(mmol/g)

0.902

0.131

0.902

Figure 3: SEM images of (a) Fe₃O₄ MNPs, and (b) Fe₃O₄@MNPs@Silica

3.2. Optimization using Box-Behnken design

In RSM, the connections between several explanatory variables and one or more response variables are examined. To explain the process and investigate the impacts of the independent variables, this experimental methodology develops a mathematical model. (Baş & Boyacı, 2007). According to the prior equation (1), it was reasonable to employ the Box-Behnken design (BBD) in this investigation, which consisted of four independent variables and points, resulting 27 three center experimental runs.

Factors: 4 Base runs: 27
Replicates: 1 Total runs: 27
Base blocks: 1 Total blocks: 1

These runs were performed to determine the adsorption capacity of Fe(III) using Fe₃O₄@MNPs@Silica in an aqueous solution. The obtained data and the four independen variables were used to fit a quadratic response surface model, and the fitted equations for Fe(III) adsorption using Fe₃O₄@MNPs@Silica.

3.3. Interpretation of surface plot

The pH of the solution, the weight of the adsorbent, the concentration of Fe(III), and the duration of the experiment were the most significant variables influencing Fe(III) Fe₃O₄@MNPs@Silica adsorption onto aqueous solution. Surface plots demonstrated the relationship between these factors and adsorption capacity. While the other two elements in these plots are kept constant, the function of two of the factors is investigated (Fig. 4).

	4.	4.0	100	0.55	32.5	1.560
1	5.	1.0	55	0.10	32.5	0.140
2	6.	1.0	55	0.55	60.0	0.556
s—	7.	2.5	100	1.00	32.5	0.500
t	8.	2.5	55	0.55	32.5	0.556
	9.	4.0	55	0.10	32.5	0.090
/	10.	2.5	55	1.00	5.0	0.956
t .	11.	4.0	55	1.00	32.5	0.650
	12.	2.5	10	0.55	5.0	2.560
1 -	13.	2.5	10	0.55	60.0	2.060
1— 1—	14.	1.0	55	0.55	5.0	0.353
7	15.	1.0	55	1.00	32.5	1.400
/	16.	4.0	55	0.55	60.0	1.223
	17.	2.5	100	0.10	32.5	0.890
	18.	1.0	10	0.55	32.5	2.260
	19.	2.5	100	0.55	5.0	0.306
	20.	2.5	55	1.00	60.0	1.327
	21.	4.0	10	0.55	32.5	2.060
	22.	1.0	100	0.55	32.5	0.306
	23.	2.5	55	0.10	60.0	2.636
е	24.	2.5	10	0.10	32.5	0.960
e g	25.	2.5	10	1.00	32.5	3.200
.•	26.	4.0	55	0.55	5.0	1.101
	27.	2.5	100	0.55	60.0	3.870
e						

Through previous forms and the values of adsorption capacity in Table 2, it is evident that the value of adsorption capacity changes in response to different factors, increasing with the pH value from 1.0 to 2.5, after which it begins to decrease. As for the weight effect, it was found to be gradually increasing by weight until it reached constant, i.e. saturation of the surface of Fe₃O₄@MNPs@Silica with all Fe(III), which meant that, with the lowest amount of Fe₃O₄@MNPs@Silica, Fe(III) could be removed, indicating their efficiency in the extraction process. Hence, we conclude that the highest value of adsorption capacity is 3.870 mmol/g, which we obtained under conditions

2.5, 100 mg, 60 min, and 0.005 mM, respectively, from the pH, the weight of Fe3O4@MNPs@Silica, the time of adsorption, and the concentration of Fe(III).

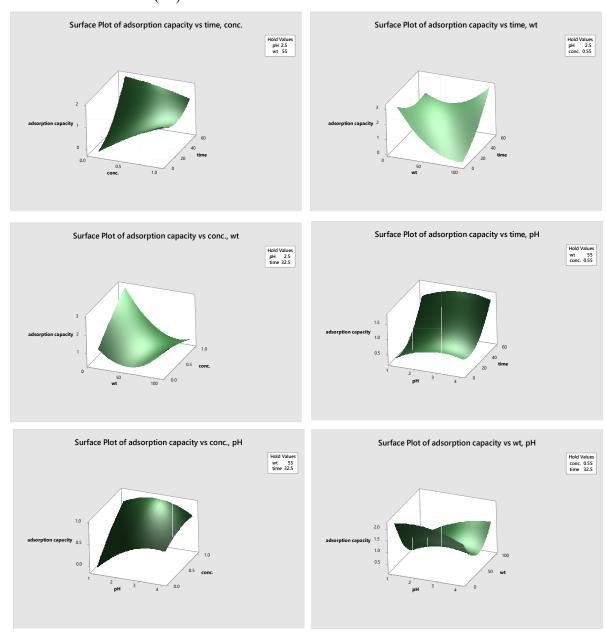


Figure 9: Response surface plots for interactions of adsorption of Fe(III) by Fe₃O₄@MNPs@Silica

4. Conclusions

This study reports the development of a nanocomposite adsorbent composed Fe₃O₄@MNPs@Silica. This adsorbent exhibits a strong affinity for removing Fe(III) ions using external magnetic separation from aqueous solutions. The Response Surface Methodology was used to analyze adsorption data. At 2.5, 100 mg, 60 min, and 0.005 mM, from pH, the weight Fe3O4@MNPs@Silica, the time of adsorption, and the concentration of Fe(III), respectively, the maximum value of adsorption capacity was 3.870 mmol/g. These results demonstrate the possibility of synthesizing a nanocomposite through a simple method.

References

- Abdel Rahim, A. M., Ahmed, S. A., & Soliman, E. M. (2020a). Adsorptive removal of Fe(III) using gallic acid anchored iron magnetic nano-adsorbents synthesized via two different routes under microwave irradiation. In *Indian Journal of Chemistry* (Vol. 59).
- Ahmed, S. A., & Soliman, E. M. (2015). New Trend for Acceleration Solid Phase Extraction Process Based on Using Magnetic Nano-adsorbents along with Surface Functionalization through Microwave Assisted Solvent-free Technique. *Analytical Sciences*, 31(10), 1047–1054. https://doi.org/10.2116/analsci.31.1047
- Ba-Abbad, M. M., Benamour, A., Ewis, D., Mohammad, A. W., & Mahmoudi, E. (2022). Synthesis of Fe₃O₄ Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application. *JOM*, 74(9), 3531–3539. https://doi.org/10.1007/s11837-022-05380-3
- Baş, D., & Boyacı, İ. H. (2007). Modeling and optimization I: Usability of response surface methodology. *Journal of Food Engineering*, 78(3), 836–845.
 - https://doi.org/https://doi.org/10.1016/j.jfoodeng.2 005.11.024
- Billah, R. E. K., Haddaji, Y., Goudali, O., Agunaou, M., & Soufiane, A. (2021). Removal and regeneration of iron (Iii) from water using new treated fluorapatite extracted from natural phosphate as adsorbent. *Biointerface Research in Applied Chemistry*, 11(5), 13130–13140. https://doi.org/10.33263/BRIAC115.1313013140
- Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by Sol-Gel Method: Synthesis and Application. *Advances in Materials Science and Engineering*, 2021(1),

- 5102014. https://doi.org/https://doi.org/10.1155/2021/51020
- El Shahawy, A., Mubarak, M. F., El Shafie, M., & Abdulla, H. M. (2022). Fe(iii) and Cr(vi) ions' removal using AgNPs/GO/chitosan nanocomposite as an adsorbent for wastewater treatment. *RSC Advances*, *12*(27), 17065–17084. https://doi.org/10.1039/d2ra01612e
- Gaalova, J., Krystynik, P., Dytrych, P., & Kluson, P. (2018). Elimination of dissolved Fe3+ ions from water by electrocoagulation. *Journal of Sol-Gel Science and Technology*, 88(1), 49–56. https://doi.org/10.1007/s10971-018-4669-z
- Geißler, D., Nirmalananthan-Budau, N., Scholtz, L., Tavernaro, I., & Resch-Genger, U. (2021). Analyzing the surface of functional nanomaterials—how to quantify the total and derivatizable number of functional groups and ligands. *Microchimica Acta*, 188(10), 321. https://doi.org/10.1007/s00604-021-04960-5
- Jamasbi, N., Mohammadi Ziarani, G., Mohajer, F., Darroudi, M., Badiei, A., Varma, R. S., & Karimi, F. (2022). Silica-coated modified magnetic nanoparticles (Fe3O4@SiO2@(BuSO3H)3) as an efficient adsorbent for Pd2+ removal. *Chemosphere*, 307, 135622. https://doi.org/https://doi.org/10.1016/j.chemosphe re.2022.135622
- Khuder, A., Koudsi, Y., Abboudi, M., & Aljoumaa, K. (2022). Removal of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), and Pb(II) from Water Solutions Using Activated Carbon Based on Cherry Kernel Shell Powder. *Iranian Journal of Chemistry and Chemical Engineering*, 41(11), 3687–3705. https://doi.org/10.30492/ijcce.2021.523406.4539
- Manousi, N., Rosenberg, E., Deliyanni, E., Zachariadis, G. A., & Samanidou, V. (2020). Magnetic solid-phase extraction of organic compounds based on graphene oxide nanocomposites. In *Molecules* (Vol. 25, Issue 5). MDPI AG. https://doi.org/10.3390/molecules25051148
- Middea, A., Spinelli, L. dos S., de Souza Junior, F. G.,
 Fernandes, T. de L. A. P., de Lima, L. C.,
 Barthem, V. M. T. S., Gomes, O. da F. M., &
 Neumann, R. (2024). Removal of Fe3+ Ions from
 Aqueous Solutions by Adsorption on Natural EcoFriendly Brazilian Palygorskites. *Mining*, 4(1), 37–57. https://doi.org/10.3390/mining4010004
- Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Akbarzadeh Pivehzhani, O., & Johan, M. R. (2020). Application of efficient magnetic particles and activated carbon for dye removal from wastewater. In *ACS Omega* (Vol. 5, Issue 33, pp. 20684–20697). American Chemical Society. https://doi.org/10.1021/acsomega.0c01905
- Moradnia, F., Taghavi Fardood, S., Ramazani, A., Min, B. ki, Joo, S. W., & Varma, R. S. (2021). Magnetic Mg0.5Zn0.5FeMnO4 nanoparticles: Green sol-gel synthesis, characterization, and photocatalytic

- applications. *Journal of Cleaner Production*, 288. https://doi.org/10.1016/j.jclepro.2020.125632
- Namdeo, M., & Bajpai, S. K. (2008). Chitosan—magnetite nanocomposites (CMNs) as magnetic carrier particles for removal of Fe(III) from aqueous solutions. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 320(1), 161–168.
 - $https://doi.org/https://doi.org/10.1016/j.colsurfa.20\\08.01.053$
- Perwez, M., Fatima, H., Arshad, M., Meena, V. K., & Ahmad, B. (2023). Magnetic iron oxide nanosorbents effective in dye removal. *International Journal of Environmental Science and Technology*, 20(5), 5697–5714. https://doi.org/10.1007/s13762-022-04003-3
- Rahim, A. M. A. (2024). Synthesis of a Novel CuFe2O4@Schiff Base Magnetic Nanocomposite for the Removal of Cu(II) from Water Samples. In *Iranian Chemical Society Anal. Bioanal. Chem. Res* (Vol. 11, Issue 1).
- Sharifianjazi, F., Irani, M., Esmaeilkhanian, A., Bazli, L., Asl, M. S., Jang, H. W., Kim, S. Y., Ramakrishna, S., Shokouhimehr, M., & Varma, R. S. (2021). Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery. In *Materials Science and Engineering:* B (Vol. 272). Elsevier Ltd. https://doi.org/10.1016/j.mseb.2021.115358
- Zhang, L., Liu, H., Zhu, J., Liu, X., Li, L., Huang, Y., Fu, B., Fan, G., & Wang, Y. (2023). Effective Removal of Fe (III) from Strongly Acidic Wastewater by Pyridine-Modified Chitosan: Synthesis, Efficiency, and Mechanism. *Molecules*, 28(8). https://doi.org/10.3390/molecules28083445